skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murrugarra, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Perez_Garcia, Victor M (Ed.)
    Free, publicly-accessible full text available May 15, 2026
  2. Abstract The concept of control is crucial for effectively understanding and applying biological network models. Key structural features relate to control functions through gene regulation, signaling, or metabolic mechanisms, and computational models need to encode these. Applications often focus on model-based control, such as in biomedicine or metabolic engineering. In a recent paper, the authors developed a theoretical framework of modularity in Boolean networks, which led to a canonical semidirect product decomposition of these systems. In this paper, we present an approach to model-based control that exploits this modular structure, as well as the canalizing features of the regulatory mechanisms. We show how to identify control strategies from the individual modules, and we present a criterion based on canalizing features of the regulatory rules to identify modules that do not contribute to network control and can be excluded. For even moderately sized networks, finding global control inputs is computationally challenging. Our modular approach leads to an efficient approach to solving this problem. We apply it to a published Boolean network model of blood cancer large granular lymphocyte (T-LGL) leukemia to identify a minimal control set that achieves a desired control objective. 
    more » « less
  3. Abstract The problem of determining which nucleotides of an RNA sequence are paired or unpaired in the secondary structure of an RNA, which we call RNA state inference, can be studied by different machine learning techniques. Successful state inference of RNA sequences can be used to generate auxiliary information for data-directed RNA secondary structure prediction. Typical tools for state inference, such as hidden Markov models, exhibit poor performance in RNA state inference, owing in part to their inability to recognize nonlocal dependencies. Bidirectional long short-term memory (LSTM) neural networks have emerged as a powerful tool that can model global nonlinear sequence dependencies and have achieved state-of-the-art performances on many different classification problems. This paper presents a practical approach to RNA secondary structure inference centered around a deep learning method for state inference. State predictions from a deep bidirectional LSTM are used to generate synthetic SHAPE data that can be incorporated into RNA secondary structure prediction via the Nearest Neighbor Thermodynamic Model (NNTM). This method produces predicted secondary structures for a diverse test set of 16S ribosomal RNA that are, on average, 25 percentage points more accurate than undirected MFE structures. Accuracy is highly dependent on the success of our state inference method, and investigating the global features of our state predictions reveals that accuracy of both our state inference and structure inference methods are highly dependent on the similarity of pairing patterns of the sequence to the training dataset. Availability of a large training dataset is critical to the success of this approach. Code available at https://github.com/dwillmott/rna-state-inf . 
    more » « less
  4. Thieffry, Denis (Ed.)
    Candida albicans , an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C . albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C . albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C . albicans yeast to hyphal transition, integrating multiple environmental factors and regulatory mechanisms. We validate the model by a systematic comparison to prior experiments, which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative hypotheses that are testable by follow-up experiments. Analysis of this model revealed two time-constrained windows of opportunity that must be met for the complete transition from the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this transition. We experimentally validate two of these control predictions in C . albicans strains lacking the transcription factor UME6 and the histone deacetylase HDA1 , respectively. This model will serve as a strong base from which to develop a systems biology understanding of C . albicans morphogenesis. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)